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NOTICES

Disclaimers

The findings in this report are not to be construed as an
official Department of the Army position, unless so desig-
nated by other authorized documents.
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1. INTRODUCTION

The Army inventory contains several models which compute transmission (T)
through an obscuring medium composed, for example, of smoke or dust;1 that is,

T e (1)

where T is the optical depth along the path of propagation.

On one hand attempts are then made to directly relate transmission to electro-
optical system performance and smoke effectiveness by considering only the
directly transmitted signal:

S(r) S( )T (2)

where S(r) is the optical signal received by an observer at (r) from a target
at +o The transmission T) includes effects of both scattering out of the
path plus absorption along the path, the composite process being referred to
as extinction.

On the other hand system performance modelers know that electro-optical sys-
tems (including the eye-brain) respond not only to directly transmitted radia-
tion but also to contrast, the definition of which may vary among models but
generally requires an addition to equation (2) to account for path radiance,
or "brightness." That is (see also figure 1),

H =p S(ro0)T + S ' r (3)

where the contribution due to path radiance (Sp) may be due either to scatter-
ing of ambient radiation (for example, sun, moon, and sky) into the path of
propagation or (thermal) emission along the path, or both. References to
scattering out of and into are emphasized to note that the former does not
directly contribute to path radiance and can usually be treated as indistin-
guishable from simple Beer's law attenuation. The latter however, which does
contribute to path radiance, is usually a complex function of many factors,
including angular properties of both the scattering medium and the ambient
radiation.

1R. A. Sutherland, D. W. Hoock, and R. B. Gomez, 1981, An Objective Summary of
US Army Electro-Optical Modeling and Field Testing in an Obscuration Environ-
ment, ASL-TR-0096, US Army Atmospheric Sciences Laboratory, White Sands
Missile Range, NW
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Note that, unlike transmission, path radiance has a vector nature which means
physically that in real world scenarios, such as the smoked battlefield, asym-
metries exist between target and observer, giving one or the other an "optical
advantage." This vector nature is the essence of the present model and should
not be overlooked in the deceptively simple form of equation (3) or by the
necessarily complex formulation to follow.

The existence of path radiance in real world scenarios is often of overriding
significance in affecting perception and is commonly observed in nature. One
example is the apparent disappearance of stars in daytime. Another is experi-
enced by individuals driving a vehicle through fog with the headlights on high
beam. In both cases perception is diminished due to interference caused by
scattering that is manifested by path radiance. In the infrared the effect of
path radiance is to (partially) offset the effects of absorption. Another
example is radiance data sensed via orbiting satellites. Often such data are
highly accurate (-1C)2 3 when inverted to obtain surface temperature. This
accuracy occurs despite the fact that the path transmission in these cases,
even in the so-called atmospheric "windows," is only on the order of 60 per-
cent, which if taken alone would imply a corresponding temperature error on
the order of 50 to 100°C! The explanation here lies in the basic physics of
infrared propagation in which, for practical scenarios, absorption is always
accompanied by Kirchhoff (i.e., thermal) emission as elucidated for the case
of the atmosphere in early works.

4 5

The degree to which scattering and/or emission can be important is indicated
by the optical properties of the medium; the best indicators are the mass
extinction coefficient (a) which influences total extinction, the single
scattering albedo (Zo) which indicates the fractional amount of scattering,
and 1 - wo which indicates the fractional amount of absorption.

2R. A. Sutherland et al, 1979, "A Real Time Satellite Data Acquisition,
Analysis and Display System-A Practical Application of the GOES Network," J
Appl Meteorol, 3:355-360

3E. Chen et al, 1979, "Satellite-Sensed Winter Nocturnal Temperature Patterns
of the Everglades Agricultural Area," J Appl Meteorol, 8:992-1002

4C. D. Kern, 1965, "Evaluation of Infrared Emission of Clouds and Ground as
Measured by Weather Satellites," Environmental Research Papers, No. 155,
AFCRL-65-840, Air Force Cambridge Research Laboratories, Hanscom Air Force
Base, MA

5S. M. Greenfield and W. W. Kellogg, 1960, "Calculations of Atmospheric
Infrared Radiation as seen from a Meteorological Satellite," J Meteorol,
6:283-290
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Inventory smokes have w0+1 in the visible,6 indicating a predominance of scat-
tering, and w0-O in the infrared, indicating a predominance of absorption, and
consequently emission. Thus path radiance is important and perhaps even of
overriding significance for inventory smokes from the visible through the
infrared.

The need for further model development in this area was established in an
earlier study' which made a detailed examination of the Army inventory of
existing smoke and dust obscuration models. A major finding of this work was
that although most models reported capabilities for treating attenuation, all
were deficient in wholly treating path radiance for wavelengths through the
infrared.

As a step toward filling this technological gap, an improved smoke obscuration
model reported herein was developed. Since three of the models studied (SOM
11, 7 HECSOM, 8 and ACT-I, 9 did report some capabilities in the visible, the
most promising, ACT-I,* was chosen as a starting point (hence the acronym
ACT-II for the present model).

The approach is to provide optical information critical to the needs of pres-
ently existing electro-optical system performance and smoke effectiveness
models. An informal survey disclosed that the requirements were reducible to
the following fundamental quantities:

1. Ambient irradiance (light level),

2. Target and background radiance,

6R. C. Shirkey and R. A. Sutherland, 1981, "Aerosol Phase Function Data Base,"
chapter 16, EOSAEL 80, Volume I, Technical Documentation, editor L. 0. Duncan,
ASL-TR-0072, US Army Atmospheric Sciences Laboratory, White Sands Missile
Range, NM (AD B055130L)

1R. A. Sutherland, D. W. Hoock, and R. B. Gomez, 1981, An Objective Summary of
US Army Electro-Optical Modeling and Field Testing In an Obscurant Environ-
ment," ASL-TR-U9b, US Army Atmospheric Sciences Laboratory, White sands
NfTsile Range, NM

7Smoke Obscuration Model II (SOM II) Computer Code Volume II - Analyst Manual,
1979, JILUG/ME Smoke and Aerosol Working Group Document 61, JTCGIME-1'-9-Z

8R. K. Dumbauld and H. Bjorklund, 1977, Mixing Layer Analysis Routine and
Transport/Diffusion A plication Routine fOr EPAMS, EGOM-77-Z, AtmosphericSciences Laboratory, US Army Electronics Command, hite Sands Missile Range,

~NM

9R. B. Gomez, R. Pennsyle, and 0. Stadtlander, 1979, "Battlefield Obscuration
Model, ACT I," Proceedings of Smoke Symposium III, Harry Diamond Laboratories,
Adelphi, MD

*The acronym ACT derives from the developing agencies Atmospheric Sciences
Laboratory, Chemical Systems Laboratory, and TRASANA. -

9
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3. Line of sight (LOS) transmission, and

4. LOS path radiance,

where target and background radiances are computed for both the unperturbed
(smoke free) and smoked environment, and LOS data are provided for both the
observer-target and observer-background. From these fundamental quantities
other specialized data such as contrast or apparent resolvable temperature can
be determined easily for input to existing system performance and smoke effec-
tiveness models such as the target acquisition model of the Night Vision and
Electro-Optics Laboratory"° or the munition expenditures models described by
Pennsylel and Hoock. 12

In another respect care is taken so that the (present) model inputs are com-
patible with the outputs of other associated models such as LOWTRAN 13 and
AGAUS14 as well as with data collected during field tests such as Smoke Week
ll.15

Although the primary focus is on optical phenomena, the important aspect of
obscurant transport and diffusion has not been ignored. The approach here is
to generalize procedures so that the model will accommodate any arbitrary
ensemble of Gaussian smoke clouds, providing a convenient framework for possi-
ble future union with equivalent generalized transport and diffusion models.
Most present models, however, do not provide cloud temperature which is criti-
cal for the infrared. Thus a Gaussian diffusion model was developed based

10"Combat Simulation Target Acquisition Model and Data Input" (U),
CONFIDENTIAL, 1980, Draft Technical Report, US Army Night Vision and Electro-
Optics Laboratory, Fort Belvoir, VA (in process)

11R. 0. Pennsyle, 1979, Methodology for Estimating Smoke/Obscurant Munition
Expenditure Requirements, ARCSL-TR-79022, Chemical Systems Laboratory,
Aberdeen Proving Ground, MD

12D. W. Hoock, 1981, "SCREEN," chapter 5, EOSAEL 80, Volume 1, Technical
Documentation, editor L. D. Duncan, ASL-TR-OOI0, US Army Atmospheric Sciences
Laboratory, White Sands Missile Range, NM (AD B055130L)
13j. E. Selby et al, 1978, "Atmospheric Transmittance/Radiance: Computer Code
LOWTRAN 4," Environmental Research Papers, No. 626, AFGL-TR-78-0053, Air Force
Geophysics Laboratory, Hanscom Air Force Base, MA
14R. C. Shirkey et al, 1980, Single Scattering Code AGAUSX: Theory, Applica-

tions, Comparisons, and List n, ASL-TR-OUOZ, US Army Atmospheric Sciences
Laboratory, White Sands Missile Range, NM

150PG Final Test Report on Smoke Week II at Eglin AFB, FL (U), CONFIDENTIAL,
1978, Volumes I and II, DPG-FR-78-317, Dugway Proving Ground, UI
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upon commonly used procedures 1 6 17 and extended to include buoyant rise and
cloud temperature using fundamental principles.

18 19

The work is divided into three parts: the present work covers theory and
examples, a second 20 covers program documentation and a users guide, and a
third21 covers validation and applications.

:Istorlcally the problem of path radiance and its significance to visible
perception have been recognized by the Army modeling community for several
years. As early as 1972 an unpublished document described a smoke obscuration
model (SOM) which reported to compute visible contrast and was later accepted
as the Joint Technical Coordinating Group (JTCG) working model. This early
model was expanded by at least two groups, one leading to the development of
the model SOM II7 and another to ASLSOM which was further modified to become
the ACT model9 which is the direct forerunner of the present model.

2. OUTLINE AND SCOPE

The fundamental optical quantities to be determined in addition to transmis-
sion are the amounts of radiant energy received by an observer from the two
directions (approximately coincident) defined by the relative positions of a

16Smoke Effectiveness Manual, 1979, JTCG/ME Smoke and Aerosol Working Group
Document Number FM 101-61-8

17F. V. Hansen, 1979, Engineering Estimates for the Calculation of Atmospheric
Dispersion Coefficients, ASL Internal Report, US Army Atmospheric Sciences
Laboratory, White Sands Missile Range, NM

18F. Pasquill, 1974, Atmospheric Diffusion, second edition, Halsted Press
Div., John Wiley and Sons, Inc., New York
19C. H. B. Priestley, 1956, "A Working Theory of the Bent-Over Plume of Hot

Gas," Quart J Roy Meteorol Soc, 82:165-176

20R. A. Sutherland and D. Clayton, 1981, An Improved Smoke Obscuration Model

Act II: Part 2 Documentation and User Guide, Technical Report, US Army Atmo-
spheric Sciences Laboratory, White Sands Missile Range, NM (in process)

2 1R. A. Sutherland, 1981, "Comparisons Between the Improved Smoke Obscuration
Model ACT II and Recent Smoke Week Data," Proceedings of Smoke Symposium V,
Harry Diamond Laboratories, Adelphi, MD

7Smoke Obscuration Model II (SOM II) Computer Code Volume II - Analyst Manual,
1979, JTGG/ME Smoke and Aerosol Working Group Document 61, JTCG/ImE-78-9-Z

9R. B. Gomez, R. Pennsyle, and D. Stadtlander, 1979, "Battlefield Obscuration
Model, ACT I," Proceedings of Smoke Symposium III, Harry Diamond Laboratories,
Adelphi, MD
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target and background, both treated as Lambertian surfaces. The radiance
incident at the observer from each direction is generally composed of two
parts: (1) the direct radiance emitted and reflected by the target (or back-
ground) then transmitted (with some loss due to extinction) along the LOS to
the observer and (2) the diffuse, or path, radiance emitted and scattered by
suspended material (smoke) at all points (such as P in figure 2) along the LOS
then transmitted (again with some loss due to extinction) a remaining distance
to the observer, giving rise to a path radiance. One aspect of the problem
which causes major complexity is that the entire environmental sphere must be
considered the source for the reflected and diffuse radiation, thus requiring
integration over all angles, not only at the target and background but also at
all points along the LOS. Except for rare circumstances, these integrations
must be carried out by some approximate numerical technique. The approach
taken here is to divide the sky hemisphere into discrete angular sectors and
then assume that the radiances from the various sectors are either known from
measurement (as in recent field tests) or produced by some appropriate model
(perhaps LOWTRAN1 3). Terrain radiance due to reflected sky radiation and
thermal emission can then be calculated from knowledge of surface albedo,
emissivity, and temperature to complete the characterization of the (smoke
free) radiation environment, which is then assumed constant throughout. The
exact sectoring procedure used in the model is outlined in section 3.

Mathematically the problem can be summarized by the following formal expres-
sion describing radiant propagation along a straight path over a distance r.

22

++ r+ +-T( , ro )  / d -T(r,r) -
R( R(re + e, f) + (1 -o)B(X, Tpe] dr')~~,;,B - ~(~' t~

ro
(4)

where R(r) is the radiance incident at r; R(r o ) is the radiance of the target
(or background) located at ro; and 0, * are the polar angles defining the path
of propagation (that is, the LOS). Although the vector notation will be
dropped, it is assumed here and in the following that the observer is at the
origin and that the coordinates are rotated so that + and +' lie along the LOS
(figure 4). Generally the term J(r, e, *) (called the source function)
accounts for scattering into the LOS, and (1 -Zo)B(X, T p) accounts for emis-
sion from increments along the LOS.

13j. E. Selby et al, 1978, "Atmospheric Transmittance/Radiance: Computer Code
LOWTRAN 4," Environmental Research Papers, No. 626, AFGL-TR-78-0053, Air Force
Geophysics Laboratory, Hanscom Air Force Base, MA

22S. Chandrasekhar, 1960, Radiative Transfer, second edition, Dover Press
Publications, Inc., New York
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The Planck or blackbody function of equation (4) is written explicitly as

B(, Tp)= 2hc2 x-5 AX
T exp(hc/kTp) - 1]

where X is the wavelength, AX the bandpass, and h, k, and c are, respectively,
the Planck constant, the Boltzmann constant, and the speed of light in vac-
uum. The obscurant temperature (Tp) is assumed variab'le over the path, so
that B contains an implicit dependence on r.

The optical thickness (T) is defined as

r
r') aC(r")dr" ,(6)

r

where a is the obscurant mass extinction coefficient and C is the obscurant
concentration. Both obscurant temperature and concentration are discussed in
section 5.

The source function J(r, 8, f) is difficult to compute, requiring integrations
over the entire environmental sphere accounting for the angular characteris-
tics of both the ambient radiation and the scattering medium. Except for
trivial cases, no exact methods exist for computing this term; and for real-
istic scenarios, some approximate technique must be employed. The model uses
the single scattering approximation in which the source function can be
written as

1~r 0, P(. s LWO, ')e - r  rs dnz'
J(r, 8, *) =)e r 4 ' (7)

4nr

where e is the scattering angle (figure 2) and P the phase function. The
term LIE , 0') consists of two parts: the source radiance R (', *') from
the directions of the sky and terrain sectors and the thermal emission along
these same directions. Mathematically,

rs

L(', ') = Rs (e', *') + (i - zo) f B(), Tp)e [ T (r ' rs)-T(r, r')]dr, (8)
r

In the above expressions, r is distance to any point along the LOS; r' is
distance from that point along the direction defined by 8', o'; rs is distance
to the sky and terrain sources; and dnl' is the differential solid angle.

13



For inventory smokes (and neglecting polarization), the angular dependence of
the phase function is dependent only upon the scattering angle, which from
simple geometry is given by (see figure 2):

cos es = [cos 0 cos e' + sin e sin 6' cos(O - ')]. (9)

Some caution is required in using equation (9) to assure the proper algebraic
sign. For use in the phase function equation (9) is correct as it stands, but
for Lambertian surfaces (that is, target, background, etc.) the sign must be
reversed because the convention used in the model requires the surface normal
pointing positive inward (for example, away from the observer) which in turn
requires the reversal in sign.

The phase function is required as input but can readily be obtained from the
associated model AGAUS,14 one version of which is distributed with the
Electro-Optical Systems Atmospheric Effects Library (EOSAEL 8023). The phase
function is assumed to be normalized such that

Ti 4 d (10)

but in the model it is renormalized via equation (10) to a single scattering
albedo specified as input. However, to be strictly compatible with theory the
input single scattering albedo should be that computed from Mie scattering.

The major objective of the model is to evaluate the two components of equation
(4), once for the observer-target and once for the observer-background by
using the procedures described by equations (4) through (9). For the special
case of computing R(ro), the target or background radiance, the same procedure

for the second term of equation (4) is used except that the factor __ P(6s ) in
equation (7) is replaced by (a sos %_/w) which assumes a Lambertian surface of
albedo* (a) with surface normal alonsg the LOS. Also for these cases the com-
putations are restricted to > 900 to avoid contributions due to reflection
from the rear surface. The (smoke free) surface irradiance (Esfc) is also
computed in the same manner with 0 = = 0 (vertical) and the factor 1/7

14 R. C. Shirkey et al, 1980, Single Scattering Code AGAUSX: Theory, Apelica-
tions, Comparisons, and Listing, ASL-IR-U~bZ, US Army Atmospheric Sciences

Laboratory, Wite Sands m'issile Pange, NM

2 3R. A. Sutherland, 1981, "Smoke Obscuration Model," chapter 3, EOSAEL 80,
Volume 1, Technical Documentation, editor L. D. Duncan, ASL-TR-O0O127Us Iii
Atmospheric Sciences Laboratory, White Sands Missile Range, NM (AD B055130L)

*For opaque surfaces, reflectivity (r), albedo (a), and emissivity (C) are

related as (a = r and e = 1 - r).

14



I removed. In all cases, an emission term of the form EB(X, T) is added where T
is chosen appropriately as the surface, target, or background temperature, and
the emissivity (0) is computed from the reflectivity or albedo as c = (1 -
a). The (smoke free) surface irradiance is used later (see equation (18)) to
compute radiances for terrain sectors which are then treated in the same
manner as sky sectors.

For the visible scenarios, the effect of emission will be negligible because
of the small ness of the bl ackbody function in these spectral regions at
nominal temperatures. For infrared scenarios, this term often dominates,
being more pronounced at higher temperature, which means that errors due to
neglect of multiple scattering will be minimal in the infrared. However,
errors may occur in the infrared due to uncertainties in the cloud tempera-
ture.
The process to be modeled here can be summarized in geometrical terms with the
aid of figure 2. Simply stated, the problem is to compute contributions to
path radiance at each point P along the LOS, and then to sum over all such
points. At each increment, effects of extinction must be included over the
remaining path M to the observer. At each point P the contribution is com-
posed of two parts--one due to scattering into the increment from all angles
and the other due to emission by the increment. The single scattering
approximation assumes that the radiance along any path 7F is scattered into
the LOS only once and that this scattering occurs at P. Thus the radiance
scattered into the LOS at point P consists of the source radiance, R5, reduced
by extinction over the path 7W, plus the summation of the emission from each
element P' along the rdth 3P; the emissive contribution of each element is
reduced by extinction over the path PP'. The total scattering contribution of
each increment at P is found by summing over all angles, accounting for
angular scattering properties of the medium via the phase function. Total
path radiance is found by summing over all increments along DT.

In the model the increment spacings are chosen by a criterion based upon the
incremental optical depth ATr. This method speeds computations by avoiding
insignificant contributions for increments containing no obscurant which would
occur for a criterion based on spatial separation (ztr). The minimum spacing
in the model however is normally defaulted to 1 m.

The model treats extinction due to the ambient atmosphere by appropriately
modifying transmission (i.e., TLOS 7-Tsm T #~0 ) for propagation along the
LOS. This option is employed by way of a user supplied volume extinction

coeficiet, a), o t atmo * e'1  where L is distance of propagation.
Parallel point sources of radiation, including the sun or moon, are also
treated by the model.

In all of the above computations, the model computes optical thickness (T) by
assuming the medium composed of any ensemble of obscuring smoke clouds defined
by centrold locations, Gaussian standard deviations, and temperature. Methods
for integrating equation (6) and for producing the ensemble are given in later
sections of the report.

15



3. AMBIENT IRRADIANCE (SECTORING SCHEME)

This section describes the sectoring scheme used to simulate incoming radia-
tion from sky and terrain which will then be used to approximate terms for the
source function of equation (8). Throughout this section repeated use will be
made of approximations, assuming that scenario relative distances are small in
comparison to spatial variations in ambient conditions. This process consid-
erably simplifies the geometry by allowing all scenario elements to be treated
as exposed to the same ambient radiational environment. These are approxima-
tions often used in problems of this type and introduce only minimal errors.

The major divisions of the entire 4-f steradians comprising the environmental
sphere are sketched in figure 3. The upper sector is assumed to be comprised
of sky (including sun, moon, and clouds) and the lower to be overall flat ter-
rain. Both sky and terrain will be treated as sources of ambient radiation,
the latter through reflection of sky radiation and thermal emission.

To facilitate computations, the two major regimes are further subdivided into
angular sectors subtending equal solid angles. These discrete sectors are
then treated as point sources of parallel radiation emanating from the direc-
tion of the sector midpoint. Additional sources of radiation such as the sun
or moon are superimposed at their appropriate angular positions. The model
will accommodate variable radiance from each of the discrete sky sectors, but
to maintain consistency with the assumptions mentioned earlier, one oust
assume that the terrain is homogeneous in albedo, emissivity, and temperature.

The procedure for sectoring the two regimes into equal angular sectors follows
directly from the definition of solid angle; do = sin B de do, where e and
0 are the usual zenith and azimuth angles.

The azimuthal sectoring is particularly simple since integration over contig-
uous divisions (0i, ot+1) yields, simply, dn, = Ao sin 0 de, where Ao =
t1+1 - 0 is the azimuthal separation, which for m sectors is simply Ao =
2w/m. The representative midpoints are then

For the zenith sectors, the integration between contiguous divisions yields

An = Ao(cos 6 -cos ej+ )  (12)

For n sectors, all of which are equal and contained in a total solid angle 2W,
we have

Ao(cos 0e - Cos ej+ 1) = 2w/nm (13)

16
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which after substituting for A* and rearranging becomes

Cos ej+ C Cos e - 1/n , (14)

from which all divisions can be calculated by knowing that e1 = 0. An equiva-

lent but sometimes more convenient expression is

Cos 0 1 (j -1)l/n.(5

Further reasoning yields the following equation for sector midpoints:

cos'6 = 1 - (2j - f)/2n .1 (16)

The corresponding distances to the terrain sector midpoints are

riJ = h/cos _e, (17)

where h is the vertical distance from the surface for the particular scenario
element under consideration. The radiance from the sector, assuming a
Lambertian surface is

R = [(a/w)Esfc + (1 - a)B(X, Tf)] (18)

where a, Esfc, and Tsfc are, respectively, the surface albedo, irradiance (see

section 2), and temperature. From this point on, the only difference in
treating sky or terrain sectors is that the finite distance to the terrain
sectors must be considered via equation (17), whereas the sky sectors can be
assumed at infinity (actually 10,000 m in the model).

Ordinarily one does not have sufficient data, or the inclination, to provide
the radiance values for all of the sectors used in the model; therefore, the
model was programmed to proportion the sectors uniformly by interpolating the
input radiance values from arbitrary angles. This interpolation makes the
model input directly compatible with sky radiance data from the smoke tests.

17



Also, to avoid inconsistencies between the computed surface irradiance (Esfc)
and the reported measurements, 2' the sun and sky input data are treated only
as relative and are normalized so as to reproduce the measured value when
integrated over the sky hemisphere. Thus the model as now coded requires only
relative data from sun and sky but an absolute determination of surface irra-
diance. In effect this method reduces the complexity of the required input.

4. OPTICAL THICKNESS CALCULATIONS

This section describes the general method used to compute smoke concentration
C(r) and optical thickness. Throughout we will assume a constant extinction
coefficient so that the optical depth is simply the product (aCL) where CL is
the line integrated concentration, commonly called CL product.

The methodology is based upon the general assumption that a smoke plume or
cluster can be represented by a series of spatially and temporally discrete
overlapping clouds each with concentration given by a trivariant Gaussian
function. This is a common assumption used in many models although the manner
of spacing and sizing such clouds may vary from model to model. For this
latter reason the methodology is kept general so as to be easily adaptable to
various cloud transport models.

For some ith cloud centered at 71i , 7i' and 7 the concentration (due to this
source only) is given by

(x, y, z) = (21"  1--2 ii e [+ ( +

(19)

where Qi is the total mass of the cloud and accounts for (1) munition fill
mass expended during the burn producing the cloud, (2) munition efficiency,
and (3) smoke yield factor. The total concentration is found by summing the
concentrations of all such clouds.

2 1R. A. Sutherland, 1981, "Comparisons Between the Improved Smoke Obscuration
Model ACT I and Recent Smoke Week Data," Proceedings of Smoke Symposium V.,
Harry Diamond Laboratories, Adelphi, MD
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It is convenient to rewrite equation (19) in spherical coordinates to give an
expression for concentration along an LOS defined as before by polar angles e
and f at some arbitrary point a distance r from the origin. It is straight-
forward to show that the equivalent to equation (19) is

(2i)
- /2

C (r , 8, e1/2Q e - /2 + +,yz Q x X0Y 2 (or- )2 ( C 0,)2 0

(20)

where the indices have been dropped to avoid cumbersome notation. The line
parameters a, 6, 1 and offsets x0, Yo, Z0 are:

a = sin e sin * x0 = X -x

0= sin 0 cos € Yo = -i " Y' (21)

r = cos 0Zo = i- zI

where xi, yi, and zi are coordinates of any point on the LOS, taken in the

model to be the common point such as P in figure 4.

With considerably more algebraic manipulation which involves expanding the
expression in the exponential, rearranging and then rewriting the resultant
expression as a perfect square, the following expression results:

Ci(r, o, =Qj e/2 (r -(22)

which is itself a Gaussian with mean Ri, standard deviation zi, and strength
Q given by the following expressions, again with indices suppressed:

xa (aZ U )2 + 0 yo(ax a)2 + y zo( x  y)2

(a ay az)2 + (8 Ox Uz)2 + (y ax ay)
2

0
x 'y 'z

[(a Uy Oz 2 + X a az)2 + (y x a y )2]112
9(23)

19 I.



Q1 (2w)3/2 Q 1 2

R (a + (s
1 (°)/ () +( (23) cont

The final desired result for line integrated concentration beginning at point
P(xi, yi, zi) along the line described by (a, 8, y) for a distance D becomes
(see figure 4):

CLi(D , 0, )f-lv17 = Q! E. rf - (24

where the error function is defined as

x
erf(x) = _. o exp(_t 2)dtex((25)

0

and is computed in the model according to the approximate technique as
described by Abramowltz and Stegun.

24

The formulation here applies in a wind vector aligned coordinate system
requiring that scenario Cartesian coordinates and angles be transformed to
this system before the calculations.

The model assumes both concentration and temperature to be Gaussian so that a
relationship analogous to equation (24) is used to obtain temperature of
various line segments for computation of thermal emission. Also symmetric
"image" clouds accounting for surface particulate reflection are included in
the usual manner.23

5. CLOUD CONCENTRATION AND TEMPERATURE

The preceding sections assumed a transport and diffusion model generating some
pattern of overlapping Gaussian clouds. Several methodologies which can be

24M. Abramowitz and I. Stegun, 1970, Handbook of Mathematical Functions, Dover
Press Publications, Inc. New York
23R. A. Sutherland, 1981, "Smoke Obscuration Model," chapter 3, EOSAEL 80,
Volume 1, Technical Documentation, editor L. D. Duncan, ASL-TR-072, US AIW
Atmospheric Sciences Laboratory, White Sands Missile Range, NM (AD B055133L)
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adapted to this general concept are available. We borrow bits and pieces from
these methodologies to produce a submodel to be used for the validation
studies reported later. Production of this model consists of generating the

parameters Qi,f i Y, iT), (°ax, ay, aZ), and cloud temperature which will
now be covered in order.

5.1 Smoke Source Function (Q)

The factor Q represents the total mass of a smoke cloud and is composed of the
product of factors M, X, and Y where M is the mass of munition fill expended
during the burn producing the cloud, X is the chemical efficiency with which
the mass is converted to actual smoke nuclei, and Y is the smoke yield factor
which accounts for increased mass due to hygroscopic interactions with the
ambient air mass.

For instantaneous bursts such as bulk fill white phosphorus munitions, a
single cloud of mass Q = M X Y is used. For munitions of extended burning
time (> 1 s), the plume is generated as a series of discrete puffs produced
during short time increments (nominally 1 s). Variable burn rate is included
by employing either a quadratic or exponential function with coefficients as
determined empirically from field tests. The EOSAEL 80 Technical Documenta-
tion23 contains a review of these burn coefficients and other munition charac-
teristics.

5.2 Cloud Centroids (X, Y, and !)

With the coordinate system rotated to align the positive x axis along the wind
vector and assuming the cloud to be transported by the mean wind (U), the
cloud centroids are modeled as

= + Xm

Ym (26)

=Z m + H(t)

where XmI Ym' and Zm are munition coordinates. The method of computing the

cloud rise function H(t) which also involves the cloud temperature is dis-
cussed later. The mean windspeed is computed by averaging vertically over the

2 3R. A. Sutherland, 1980, "Smoke Obscuration Model," chapter 3, EOSAEL 80,
Volume 1, Technical Documentation, editor L. D. Duncan, ASL-TR-O072, US A'imy
Atmospheric Sciences Laboratory, White Sands Missile Range, NM (AD B055130L)
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significont cloud extent (3a) using the usual windspeed power law: U(z) =

Ur(Z/Zr) where Ur is the wlndspeed at an (input) reference height (Zr) and P
is the vertical profile exponent.

5.3 Dispersion Functions (ax' ly, a Z)

The dispersion functions ax, y, a z are all expressed as power functions of

the x centroid with initial offset, a(O); that is,

yx, y,z = (o) + ( ) (T in meters) (27)

The source sigmas a(O), essentially representing the dimensions of the cloud
at t = 0 are modeled by the following power functions which were derived from
the data of AMSAA TR-201.

25

0.3
S(O) =5.0 Q

x, y
(Q in kilograms) (28)

z(O) = 1.7 Q

The diffusion parameters A and B of equation (27) are modeled as functions of
the surface average roughness element (Zo) and the stability category as

listed in table 1. For surface roughness Zo > 0, the values are those cited

by Hansen; 17 and for these cases the parameter C of equation (27) is set to

zero. For a roughness entered as Z 0 O (default), the method of the Smoke

Effectiveness Manual 16 is used, in which case the initial sigmas are absorbed

in the parameter C, and the term o(O) is set to zero.

2 5 Analysls of the Smoke Cloud Data from the August 1975 Jefferson Proving
Ground Smoke Test, 1977, AMSAA Technical Report TR-ZOl, Aberdeen Proving
Ground, IM (AD. A045874)
17F. V. Hansen, 1979, Engineering Estimates for the Calculation of Atmospheric
Dispersion Coefficients, ASL Internal Report, US Army Atmospheric Sciences
Laboratory, White Sands Missile Range, NM

16Smoke Effectiveness Manual, 1979, JTCG/ME Smoke and Aerosol Working Group
Document Number FM 101-61-8
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) Following the methodology cited by Hansen, 17 a 9.y, and az are reduced by

factors 0.74, 0.67, and 0.67, respectively, for instantaneous sources.

5.4 Cloud Temperature and Buoyant Rise

Current methods for modeling buoyant rise are generally limited to empirical
methods based upon observations of factory smoke stack effluents26 or curve
fits to data from field tests.2 5 These procedures, although of approximate
validity for special circumstances, have severe shortcomings for the general
case where it becomes necessary to simultaneously model cloud temperature
consistently. This consistency is particularly important in the infrared
where cloud temperature acquires an added significance of its own in addition
to the indirect effect on buoyancy. The method developed for the model
applies basic principles and certain simplifying assumptions borrowing heavily
from earlier works 1 8 19 in a self-consistent numerical scheme as outlined
below.

The buoyant motion is modeled by treating each cloud of the ensemble as though
independent of other clouds, an assumption consistent with the transport and
diffusion methodology discussed earlier. Initial cloud temperature is modeled
by equating the internal thermal energy of each instantaneous cloud to the
energy expended during the exothermal reaction producing the cloud. Assuming,
as before, similar distributions in both temperature and concentration, the
following expression results for initial cloud temperature:

E CO + pCp Tz
Tc - p (29)

where E is the obscurant heat of reaction (calorie/gram), CO the mean concen-

tration, pC the volumetric specific heat of the ambient air (290 cal m- 3

C-1), and Tz the ambient air temperature at the cloud centroid. The use of

equation (29) assumes complete thermal mixing between cloud and entrained air.

76 G. A. Briggs, 1965, "A Plume Rise Model Compared with Observations," J Air
Poll Control Assoc, 15:433

2SAnalysis of the Smoke Cloud Data from the August 1975 Jefferson Proving
Ground Smoke Test, 1977, AMSAA Technical Report TR-201, Aberdeen Proving
Ground, MD (AD A045874)

18F. Pasquill, 1974, Atmospheric Diffusion, second edition, Halsted Press
Div., John Wiley and Sons, Inc., New York

19C. H. B. Priestley, 1956, "A Working Theory of the Bent-Over Plume of Hot
Gas," Quart J Roy Meteorol Soc, 82:165-176
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The vertical (ambient) temperature profile is modeled as

1 - exp[-cdz - Zr)/H ]
Tz = Tr + T r m z < Hm/10

1 - exp[-c(Hm Z/H m]

[Thm - To >H/10T10  L H M HI/J z m (30)

T10 = Tz(Hm/lO)

where Tr is the temperature measured at the reference height (zr), Thm is the
temperature at the mixing height (Hm), and a is chosen so as to fit to the
measured ambient temperature gradient at the reference height and to the
adiabatic lapse rate (0.009660C/m) at z = Hm/10.

The vertical velocity (w) at any later time is found by first applying the
conservation of momentum along the vertical:

dw gdt T- AT - k (3,
dTm (31)

z

where AT is cloud temperature excess, g is the acceleration due to gravity, Tz
as before is the (absolute) ambient air temperature at the centroid height,
and km is the momentum mixing coefficient taken to be 0.10 s-1.

19

Equation (31) with (29) and (30) is then solved for w using reiterative tech-
niques assuming zero initial velocity to further determine the rise function
by way of the following kinematic relations:

w(t) = w(t - At) + (dw/dt)At;

(32)
H(t) = H(t - At) + w(t)At (

19C. H. B. Priestley, 1956, "A Working Theory of the Bent-Over Plume of Hot
Gas," Quart J Roy Meteorol Soc, 82:165-176
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The process is then repeated by incrementing time (and hence C) over the "age"
of the cloud. Beyond the first time increment, a term [(AT) x AC/C] is
sequentially added to equation (29) to account for the vertically changing
temperature of the ambient entrained air. In actual practice the time incre-
ment is computed so as to limit the cloud rise increment to 1 m or less to
assure convergence of the numerical procedure.

6. EXAMPLE (FROM SMOKE WEEK II)

6.1 Conversion of Model Results

As mentioned in section 1, the model was coded in such a way as to be compat-
ible with measurements made during the major field tests. This coding allows
nearly direct comparison between model results and measured data. However, a
word of caution is required to interpret the results appropriately.

The model has assumed radiometric units throughout, whereas the units reported
in the field tests are mixed; that is, sky and solar data are in radiometric
units, but target, background, and path radiance are in photopic units.
Because the underlying spectrum is not uniform (that is, the sky is blue,
clouds are white, and the sun is yellow-green), some error and confusion
result when converting between the two systems. Rather than try to correct
for the nonuniform spectrum (a procedure which could only increase the error),
we choose here to assume the spectrum nearly uniform and convert the model
results to photopic units by using the standard photopic response curve27

which can be closely approximated by the following Gaussian function (see
figure 5):

Rp = R0 exp[-1/2(X - 0 )/) 2 ] , (33)

where

R= 673 lm/W

X0 = 0.56m,

a = 0.0426um,

27A. Stimson, 1974, Photometry and Radiometry for Engineers, John Wiley and
Sons, Inc., New York
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which can be integrated to yield the following conversion factor:

E(lm) = Ro0 r a E(W) , (34)

or in terms of bandwidth (full width at half maximum):

E(lm) = R0 [=n D, E(W) (35)

Both the bandwidth (AX) and position of maximum response (Xo) are input by the
user and are 0.1O0m and 0.56)jm for straight photopic conversion. For input
wavelengths other than 0.56um, the model shifts and reduces the peak response
via a multiplicative Gaussian factor:

exp (36)

which is equal to unity for A = 0.56 and is essentially zero for the
infrared. In all cases the model also provides output in radiometric units.

Also the Smoke Week sun and sky radiances are reported for a detector field of
view of 1 requiring division by (7r/180) 2 to convert to a unit steradian.
This conversion is not required for the input to the model as now coded since
these data are used only in a relative sense. For sake of completeness, some
further required conversion factors are:

1 footcandle = 10.76 lumens per square meter

1 footlambert 10.7 6 candles per square meter
(37)

1 candle = 1 lumen per steradian

6.2 Input Data

Trial 1 of the Smoke Week II field test, held at Eglin Air Force Base,
Florida, in November 1978 consisted of the detonation of 15 155-mm hexachlo-
roethane (HC) Type MI canisters arranged in the configuration sketched in
figure 6. The source characteristics used in the model were those as reported
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in EOSAEL 80 Technical Documentation;2 3 and the mass extinction coefficient,
single scattering 2Ibedo, and phase function were those of Shirkey, Clayton,
and Quintls 28  for HC smoke. For modeling purposes, the munitions were
separated into four groups as indicated by the sketched outlines in figure 6
with each group treated as single-point detonation of appropriate total
mass. For buoyant smokes this latter procedure may cause some concern;
however, for HC munitions which are only slightly buoyant this procedure
causes only insignificant errors.

Meteorological conditions during the test were typical of fair weather with 30
percent cloud cover and 11.3 km visibility. Model inputs either taken from
the original test report or derived (estimated) from data therein are listed
in table 2. Table 3 lists the ambient sky radiation measurements made during
these tests.

The sky radiance map derived from the data of table 3 for the model sector
midpoints is shown in figure 7.

Figure 8 shows the modeled and measured results for both path integrated
concentration (figure 8a) and path luminance (figure 8b). The results for
path integrated concentration, although overall high, are typical of those
reported in other validation studies.29  The path luminance results are most
interesting in that the brightening effect at the cloud edges is quite notice-
able. This effect is often observed in natural clouds and is referred to as a
"silver lining." The occurrence and magnitude of the bright edges depend
strongly upon the angular distribution of ambient radiation. The overall
agreement between model data and data of figure 8b is encouraging.

Figure 9 is a more detailed examination of the cloud at time t = 100 s. Here
both the direct and diffuse components of radiation are plotted as a function
of depth of penetration. This procedure may be viewed as moving the target
into the cloud along the LOS away from the observer. Until a significant
port -, of the cloud is penetrated, the diffuse component is near zero and the

2 3R. A. Sutherland, 1981, "Smoke Obscuration Model," chapter 3, EOSAEL 80,
Volume 1, Technical Documentation, editor L. D. Duncan, ASL-TR-O072, Us Aiy
Atmospheric Sciences Laboratory, White Sands Missile Range, NM (AD B055130L)

28R. C. Shirkey, D. Clayton, and D. M. Qulntis, 1981, "Aerosol Phase Function

Data File PFNDAT," chapter 16, EOSAEL BO, Volume 11, Users Manual, editors
R. C. Shirkey and S. G. O'Brien, ASL-TR-0073, US Army Atmospheric Sciences
Laboratory, White Sands Missile Range, NM (AD B056119)

29D. W. Hoock, R. A. Sutherland, and D. Clayton, 1981, Comparisons Between the

EOSAEL 80 Model SMOKE and the Inventory Munition Test Phase 11a, TechnicaT
Report, US Army Atmospheric Sciences Laboratory, White Sands Missile Range, NM
(in process)
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direct component is at a maximum. As the target moves into the cloud, the
diffuse component increases while the direct component decreases. The net
effect Is a reduction in both the direct signal and the contrast.

A discussion of how these (and other) outputs of the model can be used in
other smoke screening and perception models can be found elsewhere.30

30D. W. Hoock and R. A. Sutherland, 1981, "Path to Background Luminance Ratios

for the EOSAEL 80 Munitions Expenditure Model SCREEN," Proceedings of Smoke
symposium V, Harry Diamond Laboratories, Adelphi, MD
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TABLE 1. DIFFUSION PARAMETERS USED IN THE TRANSPORT AND DIFFUSION ROUTINE FOR
VARIOUS VALUES OF ROUGHNESS PARAMETER (Zo ) AND STABILITY CATEGORY.*

STABILITY CATEGORY

A B C D E F

Default Ax  757 7.57 7.57 7.57 7.57 7.57
Bx  0.93 0.93 0.93 0.93 0.93 0.93

Ay 44.1 44.1 44.1 24.8 15.6 15.6

By 1.50 1.50 1.50 0.88 0.66 0.66

Az  16.4 16.4 16.4 14.2 12.7 12.7

Bz  1.50 1.50 1.50 0.88 0.66 0.66

0< Z0 < 10 Ax  2.77 3.55 5.38 8.68 12.6 17.5

Bx  0.90 0.90 0.90 0.90 0.90 0.90

Ay 2.77 3.55 5.38 8.68 12.6 17.5

By 0.90 0.90 0.90 0.90 0.90 0.90

Az 7.32 9.65 12.0 15.6 26.3 47.6

Bz  0.94 0.89 0.85 0.81 0.78 0.72

10 < Z0 < 100 Ax  2.77 3.55 5.38 8.68 12.6 17.55

Bx  0.90 0.90 0.90 0.90 0.90 0.90

Ay 2.77 3.55 5.38 8.68 12.6 17.5

By 0.90 0.90 0.90 0.90 0.90 0.90

Az 4.13 5.78 6.75 8.59 14.9 24.6

Bz  0.90 0.85 0.80 0.76 0.73 0.67

Zo > 100 Ax 2.77 3.55 5.38 8.68 12.6 17.5

Bx  0.90 0.90 0.90 0.90 0.90 0.90

Ay 2.77 3.55 5.38 8.68 12.6 17.5

By 0.90 0.90 0.90 0.90 0.90 0.90

Az 1.80 2.23 2.40 3.17 5.07 7.57

Bz  0.83 0.77 0.72 0.68 0.65 0.58

*Z in centimeters, x, y, and z in meters.
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TABLE 2. AMBIENT RADIATION MEASUREMENTS (VISIBLE) FROM SMOKE W4EEK 11, TRIAL 1
FIELD TEST.*

Sky Radiance W sr-1 nC2

0+ 3.70 70.70 160.70 250.70

00 6.2 6.2 6.2 6.2

100 9.8 12.1 15.8 13.1

200 7.5 13.1 20.7 13.1

300 6.6 5.1 33.8 13.1

400 7.5 17.4 54.5 12.1

500 8.5 19.7 133.6 13.1

600 10.8 21.3 124.7 13.1

700 13.1 21.3 124.7 17.4

800 17.4 10.8 103.4 17.4

900 18.4 8.9 68.6 18.1

Solar:

Zenith Azimuth Beam flux (W/m2)

51.5 151.9 208.7

Surface Irradiance (W/m2): 571.5

*Note that reported sky radiance data must be divided by (W/180) 2 to convert
unit solid angle to 1 sr. Also a factor 10-2 converts UW/Cni2 to WfM 2
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TABLE 3. METEOROLOGICAL INPUTS TO THE MODEL FOR
SMOKE WEEK I, TRIAL 1 FIELD TEST

Windspeed (8 m) 4.1 m/s

Wind direction (8 m) 116.3 deg

Wind power law exponent 0.11

Ambient air temperature (1.0 m) 23.60C

Temperature gradient -0.36°C/m

Mixing height 400 m (derived in model)

Mixing height temperature 18.3 0C (derived in model)

Stability category (Pasquill) C

Relative humidity 52%

Dew-point temperature not needed

Surface irradiance (short wave) 0.82 Langley/min

Surface temperature 24.0°C (derived in model)

Surface reflectivity 0.25 (estimated from data)

Surface roughness 0.0 (default)

Surface particle reflectance 1.0 (default)

31
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Figure 3. Sketch demonstrating the sky/terrain sectoring scheme used in
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